MATH2050B 1920 HW Sec 5.3, 5.4

TA's solutions¹ to selected problems

Section 5.3

Q4. Show that every polynomial of odd degree with real coefficients has at least one real root.

Solution. Let p be an odd degree polynomial. Write

$$p(x) = a_0 + a_1 x + \dots + a_n x^r$$

where $a_n \neq 0$. We may assume $a_n > 0$. Then $\lim_{n\to\infty} p(x) = +\infty$, $\lim_{x\to\infty} p(x) = -\infty$. Since p is continuous on \mathbb{R} , so p has a real root by Intermediate Value Theorem.

Q5. Show that the polynomial $p(x) = x^4 + 7x^3 - 9$ has at least two real roots. Use a calculator to locate these roots to within two decimal places.

Solution. Since $\lim_{x\to\infty} p(x) = +\infty$, $\lim_{x\to-\infty} p(x) = +\infty$, p(0) < 0, so p has two real roots.

Q6. Let f be continuous on the interval [0,1] to \mathbb{R} and such that f(0) = f(1). Prove that there exists a point c in $[0,\frac{1}{2}]$ such that $f(c) = f(c + \frac{1}{2})$. Conclude that there are, at any time, antipodal points on the earth's equator that have the same temperature.

Solution. Let $g(x) = f(x) - f(x + \frac{1}{2})$. Then $g(\frac{1}{2}) = -g(0)$. If g(0) = 0, then we can take c = 0. Suppose $g(0) \neq 0$, then $g(\frac{1}{2})$, g(0) are of opposite signs, therefore by Intermediate Value Theorem there exists $c \in [0, \frac{1}{2}]$ s.t. g(c) = 0, i.e. $f(c) = f(c + \frac{1}{2})$.

We may view the earth's equator as I = [0, 1] identifying 0 and 1. Let f be the function assigning to each point $x \in [0, 1]$ its corresponding temperature. Then f(0) = f(1) and conclusion follows from the above.

Q11. Let I = [a, b], let $f : I \to \mathbb{R}$ be continuous on I, and assume that f(a) < 0, f(b) > 0. Let $W := \{x \in I : f(x) < 0\}$, and let $w := \sup W$. Prove that f(w) = 0.

Solution. Since $w = \sup W$, so there is a sequence $(w_n)_{n=1}^{\infty}$ in W s.t. $w_n \to w$. By continuity $f(w) = \lim_{n\to\infty} f(w_n) \leq 0$. So $f(w) \leq 0$. We claim that f(w) < 0 is impossible.

If f(w) < 0, then by continuity, there is a small δ' s.t. f(x) < 0 for all $w - \delta' < x < w$. This contradicts to $w = \sup W$. (By definition of $\sup, \because \delta' > 0, \because \exists y \in W$ s.t. $w - \delta' < y < w$)

Hence f(w) = 0.

Q12. Let $I := [0, \pi/2]$ and let $f : I \to \mathbb{R}$ be defined by $f(x) = \sup\{x^2, \cos x\}$ for $x \in I$. Show there exists an absolute minimum point $x_0 \in I$ for f on I. Show that x_0 is a solution to the equation $\cos x = x^2$.

Solution. Let $g(x) = x^2$, $h(x) = \cos x$. The facts we will need is that g is increasing, h is decreasing.

• $g(0) = 0, g(\frac{\pi}{2}) = \frac{\pi^2}{4}.$

• $h(0) = 1, h(\frac{\pi}{2}) = 0.$

¹please kindly send an email to nclliu@math.cuhk.edu.hk if you have spotted any typo/error/mistake.

So by Intermediate Value Theorem there is x_0 s.t. $g(x_0) = h(x_0)$ (by considering g - h). Now it follows that

$$f(x) = \begin{cases} \cos x & x \in [0, x_0] \\ x^2 & x \in (x_0, \frac{\pi}{2}] \end{cases}$$

By monotonicity, $\cos x \ge \cos x_0$ for all $x \in [0, x_0]$. And $x^2 \ge x_0^2$ for all $x \in (x_0, \frac{\pi}{2}]$. Hence $f(x) \ge f(x_0)$ for all $x \in I$.

Q13. Suppose that $f : \mathbb{R} \to \mathbb{R}$ is continuous on \mathbb{R} and that $\lim_{x\to\infty} f = 0$ and $\lim_{x\to\infty} f = 0$. Prove that f is bounded on \mathbb{R} and attains either a maximum or minimum on \mathbb{R} . Give an example to show that both maximum and a minimum need not be attained.

Solution. Consider $\epsilon_0 = 1$. By continuity there is a large M s.t. |f(x)| < 1 on $\mathbb{R} \setminus [-M, M]$. f must be bounded on the closed and bounded interval [-M, M]. Thus f is bounded on \mathbb{R} .

To show that f has a max or min, we split into cases.

Case 1. f = 0 on \mathbb{R} . In this case f certainly attains a max.

Case 2. $f(x_0) > 0$ for some $x \in \mathbb{R}$. By continuity there is a large M' s.t. $|f(x)| < \frac{f(x_0)}{2}$ for all $x \in \mathbb{R} \setminus [-M', M']$. Note f attains a maximum on [-M', M'], say $f(x_1) = \max_{x \in [-M', M']} f(x)$.

Since $x_0 \in [-M', M']$, so $f(x_1) \ge f(x_0)$. It follows that $f(x_1) \ge f(x)$ for all $x \in \mathbb{R}$.

Case 3. $f(x_0) < 0$ for some $x \in \mathbb{R}$. (Similar to Case 2)

Example (of a function that only one of max or min is attained) $f(x) = e^{-x^2}$. f only attains a maximum at 0, with no minimum. $(f > 0 \text{ on } \mathbb{R})$

Section 5.4

Q10. Prove that if f is uniformly continuous on a bounded subset A of \mathbb{R} , then f is bounded on A.

Solution. Suppose f is not bounded on A, then there is a sequence (x_n) in A s.t. $|f(x_n)| > n$ for all n. By BW Theorem (x_n) has a convergent subsequence (x_{n_k}) . By uniform continuity, $(f(x_{n_k}))_{k=1}^{\infty}$ must be Cauchy. But $(f(x_{n_k}))_{k=1}^{\infty}$ is unbounded, contradiction.

Q14. A function $f : \mathbb{R} \to \mathbb{R}$ is said to be **periodic** on \mathbb{R} if there exists a number p > 0 s.t. f(x+p) = f(x) for all $x \in \mathbb{R}$. Prove that a continuous periodic function on \mathbb{R} is bounded and uniformly continuous on \mathbb{R} .

Solution. It is easy to deduce f(x) = f(x + kp) for all $x \in \mathbb{R}$ and for all $k \in \mathbb{Z}$. Note that

$$\sup_{x \in \mathbb{R}} |f(x)| = \sup_{x \in [0,p]} |f(x)|$$

Because [0, p] is a closed and bounded interval, so f is bounded on [0, p] and hence on \mathbb{R} . We need to show f is uniformly continuous on \mathbb{R} .

Let $\epsilon > 0$.

Because f is uniformly continuous on [-p, 2p], there is $\delta > 0$ s.t. for all $x, y \in [-p, 2p]$, $|x-y| < \delta$, $|f(x) - f(y)| < \epsilon$. Now, for all $x, y \in \mathbb{R}$, $|x - y| < \delta$, we can find an integer $k \in \mathbb{Z}$ s.t. $x + kp \in [0, p]$. If δ is small enough then $y + kp \in [-p, 2p]$. Therefore

$$|f(x) - f(y)| = |f(x + kp) - f(y + kp)| < \epsilon.$$