
MATH2050B 1920 HW Sec 5.3, 5.4
TA’s solutions1 to selected problems

Section 5.3

Q4. Show that every polynomial of odd degree with real coefficients has at least one real root.

Solution. Let p be an odd degree polynomial. Write

p(x) = a0 + a1x+ · · ·+ anx
n

where an 6= 0. We may assume an > 0. Then limn→∞ p(x) = +∞, limx→−∞ p(x) = −∞. Since
p is continuous on R, so p has a real root by Intermediate Value Theorem.

Q5. Show that the polynomial p(x) = x4 + 7x3− 9 has at least two real roots. Use a calculator
to locate these roots to within two decimal places.

Solution. Since limx→∞ p(x) = +∞, limx→−∞ p(x) = +∞, p(0) < 0, so p has two real roots.

Q6. Let f be continuous on the interval [0, 1] to R and such that f(0) = f(1). Prove that
there exists a point c in [0, 12 ] such that f(c) = f(c+ 1

2). Conclude that there are, at any time,
antipodal points on the earth’s equator that have the same temperature.

Solution. Let g(x) = f(x) − f(x + 1
2). Then g(12) = −g(0). If g(0) = 0, then we can take

c = 0. Suppose g(0) 6= 0, then g(12), g(0) are of opposite signs, therefore by Intermediate Value
Theorem there exists c ∈ [0, 12 ] s.t. g(c) = 0, i.e. f(c) = f(c+ 1

2).

We may view the earth’s equator as I = [0, 1] identifying 0 and 1. Let f be the function assigning
to each point x ∈ [0, 1] its corresponding temperature. Then f(0) = f(1) and conclusion follows
from the above.

Q11. Let I = [a, b], let f : I → R be continuous on I, and assume that f(a) < 0, f(b) > 0. Let
W := {x ∈ I : f(x) < 0}, and let w := supW . Prove that f(w) = 0.

Solution. Since w = supW , so there is a sequence (wn)∞n=1 in W s.t. wn → w. By continuity
f(w) = limn→∞ f(wn) ≤ 0. So f(w) ≤ 0. We claim that f(w) < 0 is impossible.

If f(w) < 0, then by continuity, there is a small δ′ s.t. f(x) < 0 for all w − δ′ < x < w. This
contradicts to w = supW . (By definition of sup, ∵ δ′ > 0, ∴ ∃ y ∈W s.t. w − δ′ < y < w)

Hence f(w) = 0.

Q12. Let I := [0, π/2] and let f : I → R be defined by f(x) = sup{x2, cosx} for x ∈ I. Show
there exists an absolute minimum point x0 ∈ I for f on I. Show that x0 is a solution to the
equation cosx = x2.

Solution. Let g(x) = x2, h(x) = cosx. The facts we will need is that g is increasing, h is
decreasing.

• g(0) = 0, g(π2 ) = π2

4 .

• h(0) = 1, h(π2 ) = 0.
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So by Intermediate Value Theorem there is x0 s.t. g(x0) = h(x0) (by considering g − h). Now
it follows that

f(x) =

{
cosx x ∈ [0, x0]

x2 x ∈ (x0,
π
2 ]

By monotonicity, cosx ≥ cosx0 for all x ∈ [0, x0]. And x2 ≥ x20 for all x ∈ (x0,
π
2 ]. Hence

f(x) ≥ f(x0) for all x ∈ I.

Q13. Suppose that f : R→ R is continuous on R and that limx→−∞ f = 0 and limx→∞ f = 0.
Prove that f is bounded on R and attains either a maximum or minimum on R. Give an
example to show that both maximum and a minimum need not be attained.

Solution. Consider ε0 = 1. By continuity there is a large M s.t. |f(x)| < 1 on R \ [−M,M ].
f must be bounded on the closed and bounded interval [−M,M ]. Thus f is bounded on R.

To show that f has a max or min, we split into cases.

Case 1. f = 0 on R. In this case f certainly attains a max.

Case 2. f(x0) > 0 for some x ∈ R. By continuity there is a large M ′ s.t. |f(x)| < f(x0)
2 for all

x ∈ R \ [−M ′,M ′]. Note f attains a maximum on [−M ′,M ′], say f(x1) = maxx∈[−M ′,M ′] f(x).

Since x0 ∈ [−M ′,M ′], so f(x1) ≥ f(x0). It follows that f(x1) ≥ f(x) for all x ∈ R.

Case 3. f(x0) < 0 for some x ∈ R. (Similar to Case 2)

Example (of a function that only one of max or min is attained) f(x) = e−x
2
. f only attains

a maximum at 0, with no minimum. (f > 0 on R)

Section 5.4

Q10. Prove that if f is uniformly continuous on a bounded subset A of R, then f is bounded
on A.

Solution. Suppose f is not bounded on A, then there is a sequence (xn) in A s.t. |f(xn)| > n
for all n. By BW Theorem (xn) has a convergent subsequence (xnk

). By uniform continuity,
(f(xnk

))∞k=1 must be Cauchy. But (f(xnk
))∞k=1 is unbounded, contradiction.

Q14. A function f : R → R is said to be periodic on R if there exists a number p > 0 s.t.
f(x+ p) = f(x) for all x ∈ R. Prove that a continuous periodic function on R is bounded and
uniformly continuous on R.

Solution. It is easy to deduce f(x) = f(x+ kp) for all x ∈ R and for all k ∈ Z. Note that

sup
x∈R
|f(x)| = sup

x∈[0,p]
|f(x)|

Because [0, p] is a closed and bounded interval, so f is bounded on [0, p] and hence on R. We
need to show f is uniformly continuous on R.

Let ε > 0.

Because f is uniformly continuous on [−p, 2p], there is δ > 0 s.t. for all x, y ∈ [−p, 2p], |x−y| < δ,
|f(x) − f(y)| < ε. Now, for all x, y ∈ R, |x − y| < δ, we can find an integer k ∈ Z s.t.
x+ kp ∈ [0, p]. If δ is small enough then y + kp ∈ [−p, 2p]. Therefore

|f(x)− f(y)| = |f(x+ kp)− f(y + kp)| < ε.
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